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Abslraet. We show that all equilibrium statistical properties of an interface confined in a 
stcip geometry, with arbitrary aspect ratio, exactly at a second-order, fluctuation dominated, 
interfacial unbinding (wetting) transitionaredetermined by asingle number q for interfacial 
binding potentials that are conformally mapped from the semi-infinite plane. The parameter 
q distinguishes the fluctuation regimes describing the wetting transition and can be directly 
related to wetting critical exponents. In the strong-fluctuation regime we find q = O  whilst 
in the weak-fluctuation regime q = 1. The values of q at all intermediate-fluctuation scaling 
regimes are also determined. We show that the eigenstates of the transfer differential 
operator for conformally mapped marginal long-ranged potentials are the simplest possible 
generalization of the eigenstates corresponding to systems with short-ranged forces. We 
speculate that the universal parametrization ofthe finite-size effectsat fluctuation dominated 
wetting transitions is a consequence of local scale invariance. 

In this letter we report some striking finite-size (FS) effects associated with the 
confinement of an interface separating two 'bulk fluid (or king spin) phases in a 
two-dimensional strip of length M ( O s x s M )  and width L ( O s y s L ) .  The fluctu- 
ations of the interface are described by the continuum effective interfacial Hamiltonian 
[I. 21 

where X is the surface stiffness coefficient, V(y) is the interfacial binding potential 
and the (single-valued) function y ( x )  describes the distance of the interface from the 
wall at y =O. The boundary conditions y(O), y ( M )  may be regarded as fixed, free or 
periodic. More specifically we shall consider the FS effects exactly at the critical wetting 
temperature of each surface [ 1-31, The binding potential V ( y )  is chosen to be symmetric 
about L / 2  so that each wall is wet by a different bulk phase. FS effects in such geometries 
particularly for systems with pure short-ranged forces (i.e. king-like spin systems) and 
M = 00 have received some considerable attention in the recent literature [4]. The 
behaviour of the fluid phase in such geometries exhibits interesting fluctuation induced 
effects due to the thermal wandering of the intrinsic interface. I n  the present letter we 

t Permanent address after 1 August 1992: Department of Mathematics, Imperial College, London SW7 ZBZ, 
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shall establish that all thermodynamic and statistical averages for the confined interface 
described by ( 1 )  are characterized by a single number (for fixed temperature T and 
Z) q in all fluctuation-dominated regimes [2, 51 for V ( y )  obtained by a conformal 
mapping ofthe potential V-(y )  corresponding to the semi-infinite plane at the appropri- 
ate wetting transition. Confinement in the strong-fluctuation (SFL) regime forms a 
universality class of FS effects described by q=O, whilst confinement in the weak- 
fluctuation (WFL) regime forms a universality class corres onding to q = 1. In the 
intermediate-fluctuation (IFL) re imes we find q = (1 - + 1 + 8 w p z Z ) / 2  for the SFL/WFL 

plays the role of a generalized Hamaker constant to be defined below and p = l/k.T. 
We show that the eigenfunctions (and hence eigenvalues) of the transfer integral 
operator of ( I ) ,  for a particular class of potentials (which correspond to different 
scaling regimes) are universal functions of elementary trigonometric functions charac- 
terized by the number q (the fluctuation designator) and is directly related to the 
critical exponents describing the wetting transition in the semi-infinite geometry (L  = 00, 

M =m). We speculate that the striking simplicity of this universal parametrization is 
a consequence of local scale invariance [ 6 ]  at fluctuation-dominated wetting transitions 
in d = 2. 

To begin recall that all thermodynamic averages (i.e. the free-energy, probability 
distributions, correlation functions) for the Hamiltonian ( I )  with arbitrary V ( y )  and 
L and M can be written in terms of the eigenfunctions +"(y)  and eigenvalues E. of 
the Schrodinger operator [ 2 ]  

borderline whilst q = ( l +  + l+8wp2E)/2 for the WFL/MF (mean-field) case. Here G 

Hereafter we set 2pzE- 1 without any loss of generality. Since we are interested in 
the universal scaling properties of the FS effects we shall simply ignore all irrelevant 
operators appearing in V ( y ) .  The FS effects in the various scaling regimes are easily 
determined. 

I. FS effects in the SFL regime 

Consider the semi-infinite plane y > 0, M = m. All (single wall) binding potentials 
V&) that decay as V ( y ) - y - '  with r > 2  exhibit universal critical wetting critical 
behaviour described by the SFL regime [7]. The mean interface displacement diverges 
as ( y )  - f-'. on approaching the wetting temperature T, ( t  E ( T ,  - T ) /  T,) with p, = 1. 
Similarly the perpendicular correlation length tL- t - " ~  with v1 = 1. The transverse 
correlation length diverges as - t-"lI with vII,=2, while the probability distribution 
P ( y ) ,  corresponding to the probability of finding the interface at height y, varies as 
P ( y ) / P (  1) -y"-" with 0 = 1 exactly at t = O  [ 8 ] .  Here 0 is the short-distance expansion 
(SDE) critical exponent for the order parameter profile m ( y ) J 8 , 9 ] .  In zero bulk field 
the order parameter profile exhibits the algebraic decay; m(y) ;  m,= (y/ZL)' at short 
distances Occ yc< tL, Here m, is the bulk order parameter of the phase adsorbed at the 
wall. The scaling properties of correlation functions in the SFL may be found by solving 
the Schrodinger equation (2) with V,(y) = 0 V y  > 0 subject to the Cauchy conditions 
[lo] $:(O)cc - t$"(O). For confinement exactly at the critical wetting temperature we 
choose V ( y )  = 0 VO < y < L and impose the Neumann boundary conditions 1/4(0) = 
$:(I,) = 0. The eigenfunctions and eigenvalues then follow as (see also [4, third 
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reference]) 

n =0, 1,2,3, .  . ""Y * A Y )  a cos y 

where we have omi!!cd !he trivia! norma!iza!inn f a ~ t o ~  .T?Iesr suEre to de!ermlne a!! 
the statistical properties of the interface confined to the finite length M and width L 
strip. Clearly the FS effects at the SFL regime described by (3) form a universality class 
provided any long-ranged forces appearing in V ( y )  remain irrelevant. 

11. FS effects in the WFL regime 

When the asymptotic decay of V,(y) for the semi-infinite plane is V,(y) = -ty-'(y + a) 
with r < 2 the critical wetting transition belongs to the WFL scaling regime [2,5]. The 
operatory-' is relevant in the renormalizationgroup (RG) sense and hence its coefficient 
is a linear measure of the deviation from criticality. In the WFL scaling regime the 
critical exponents are not universal. They are given by [5] p.= uL= vI1 /2=  l / ( ~ - r )  
with T = 2(d - l ) / (3  - d )  = 2. The rescaled probability distribution exactly at criticality 
P ( y ) / P ( l ) a y " - '  with 8 = 3 Vr i 2 [9]. To specify the criticality in the WFL regime we 
simply set t = 0 and ignore irrelevant operators. For the strip geometry the FS effects 
at  WFL regime critical wetting transitions therefore form a universality class Vr<2. 
The critical scaling behaviour can be modelled by the (trivial) potential V ( y )  = 0 
VO<y < L with the Dirichlet boundary conditions +.(O) = IL.(L) = O .  The eigenfunc- 
tions and eigenvalues are given by 

corresponding to the standard quantum mechanical problem of a particle in an  infinite 
square well [4]. 

111. FS effects at the W F L / M F  boundary 

In general, the single wall binding potential V,(y)  describing the unbinding of the 
interface at a critical wetting transition has a decay law specified by two exponents 
when 2 > r > 0 ,  

V , ( y ) =  -1y-r+1sy-r-1 y > o , 1 s > o .  (5) 

If we allow for such potentials the WFL regime described above corresponds to 1 < r < 2 
[2,9]. For r < 1 the second repulsive term in ( 5 )  is relevant and the critical exponents 
are mean-field-like. Such transitions are not fluctuation-dominated since I >> We 
shall not consider these potentials here. The WFL/MF borderiine corresponds to the 
case r = 1 so that the repulsive operator in ( 5 )  is marginal. The length scale exponents 
are now given by p - U ui,/2 = 1. In this case the SDE exponent 8 is non-universal, 
however, 0 = 2 +  l+8wp2X [9]. Exactly at  the wetting transition t = O ,  V&)= 1sy-2 j=& 
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for y > 0. Recall that in the absence of irrelevant operators the form of V,(y) ,  exactly 
at the SFL and WFL critical wetting transitions, is V,(y)  = 0 V y  > 0. Consequently the 
potential in the strip geometry that models the FS effects at these transitions is 
unambiguously defined, and is simply V ( y ) = O ,  V O < y <  L. In the present case the 
presence of a marginal long-ranged operator means that the choice of V ( y )  in the strip 
is not obvious. For instance, one may choose a potential V , ( y ) =  . S ( y - * + ( L - y ) - ' )  
corresponding to a superposition of the two marginal semi-infinite potentials. An 
alternative choice is to set V ( y )  = V, (y )  where 

V, is obtained [6] by conformally mapping the semi-infinite potential V,(y) = G Y - ~ ,  
using the standard logarithmic function w ( z ) = ( L / . r r )  In z with w = x + i y  (strip) and 

We solve for #"(y) and E. using Dirichlet boundary conditions #,(O) = $,(L) = 0. For 
n = 0 and even eigenstates 

?= x+iy  (semi-infinite p!ane). The reason for !hi9 choice of V ( y )  wi!! become &cr. 

whilst for odd states 

n ( 3 - m )  n 3 1 cos2?). 
( 7 6 )  

t ( l - J G Z  

$,,(g)=(sinT) L 2 ' 2  2 ' 2 '  L 

Here F(a,  b; c; z )  is the usual hypergeometric function and recall we have set 2 p 2 X  = I .  
The eigenvalues have a somewhat simpler form, 

E" = n = O , 1 , 2 , 3  ,... (WFL/MF) 

Finite-size effects at the WFL/MF borderline may be extended to the regime -:< G < O  
by introducing the boundary condition (for y =0) (d In # " ( y ) / d  In y ) l , = , =  
(1 +-)/2. This mimics the effect of a short-ranged operator in the potential V ( y )  
ai ihe W F L ~ M F  boundary. Equations ( i j  and < S i  remain vaiid for this case. 

IV. FS eflects at the SFL/WFL boundary 

When the binding potential V,(y)  describing the unbinding transition in the semi- 
infinite plane has a marginal long-ranged tail V, (y )  = Gy-2 for y + m and a short-ranged 
LCll l l  ,,IC C I I L I G d l  wsrrrlrg UaI1>1,!"11 ,,ray usru,y ,U L U G  >#-I., W r L  U V I U G L I I I I G .  1v JYCC.LJ 

the critical properties of the transition we must, in general, carefully specify the 
short-ranged properties of V,(y) .  A worked model [ l l ]  has shown the existence of 
three subregimes (A, B and C) each of which has different critical behaviour. We wish 
to study the FS effects exactly at the wetting transition in the presence of such a marginal 
operator at the SFL/WFL borderline. The choice of V ( y )  in the strip is again crucial. 
We Invoke, once more, the logarithmic mappine to generate V ( y )  from V,(y) .  First 
we restrict ourselves to subregime (A) of the model of Lipowsky and Nieuwenhuizen 
[I l l .  This corresponds to the case (see also [7]) where the transition is determined 
solely by the long-ranged tail in V,(y)  with .S = - a  at criticality (the short-ranged term 

A"..... -.:L:-., ...-.* :--...---:LA- L., .--.- .L^ I...... LA->--,:-" T^ -....-:c.. 
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can be set to zero except infinitesimally close to the wall). For this transition p s =  uL = 
q / 2  = CO corresponding to an essential singularity. The SDE critical exponent 0 = 2. 
Thus FS effects should be accounted for by 

- 

(9) 

with Dirichlet boundary conditions +,(O) = +,,( L )  = 0. The solutions may be obtained 
as in Ill.  We quote only the result for the eigenvalues 

E" = (;+ n j2$ n = O , 1 , 2 , 3  ,... (SFL/WFL) A. ( l o a )  

Results similar to (7a) and (76) pertain for the eigenfunctions. For subregimes (B) 
we use the potential (6) but solve for the boundary conditions (at y = O )  
(d In +,,(y)/d Iny)lr=o=f(l  --) with -$< 6 < 3 / 4 .  Again we only quote the 
results for the eigenvalues 

E" = n = O , 1 , 2 , 3  ,... (SFL/WFL) B. ( l o b )  

FS effects in subregime ( C )  will not concern us here since the wetting transition is 
first-order for this case [12]. 

As stated earlier the eigenfunctions and eigenvalues determine the complete statis- 
tical behaviour of the FS system in the respective universality class/scaling regimes. 
T h e  analytic expressions we have derived for the eigenfunctions at criticality in the 
strip exhibit a remarkable 'universality' which is only manifest when the results are 
expanded in elementary trigonometric form. Namely, all the eigenfunctions and eigen- 
values (for fixed T, X) for the diferent fluctuation scaling regimes have the same simple 
universal form determined by a single parameter q which distinguishes the universality 
classes and scaling regimes. For this reason we denote 9 the fluctuation designator. 
For the eigenvalues the general form is simple: E, = ~ " ( 9 )  where 

n = O , 1 , 2 , 3  , . ._ all regimes (11) 
2 wz 4 9 ) = ( q + n )  2 

which identifies q = O ,  l , f ( l + M )  and : ( l - m )  for the respective regime 
I-IV. The orthonormal eigenfunctions may be written 

+.(Y)=s"(Y;  9 )  all regimes. (12) 

The first five eigenfunctions S,(y; 9 )  are given in table 1. The higher eigenfunctions 
are easily generated. For even n the generic form is (sin v y / L ) '  x (a polynomial of 
degree n / 2  in sin' l r y / L )  with an obvious generalization for n odd [13]. It follows 
that all the critical properties of the interface in the strip with arbitrary dimensions L 
and M are characterized by the single number 9. All values of 9 lie on the parabola 
6(q) = q2 - q with the restriction G < 3/4 on the lower branch. Further it is clear from 
(11) and (12) that the structure of the eigenstates in the I F L  for conformally mapped 
potentials is the simplest possible generalization of the eigenstates describing FS effects 
in the SFL and wfL regimes. Whilst the mathematical analysis used to establish this 
fact is elementary it should be emphasized that the existence of a simple universal 
parametrization of the eigenstates encompassing different universality classes and 
non-universal regimes is non-trivial. Recall that the incorporation of the WFL/MF and 
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Table 1. This table shows the first five universal eigenfunctions and eigenvalucs which 
describe the FS effects in the SFL, WFL, WFL/MF and SFL/WFL regimes. These correspond 
to q = O ,  I,and(l iJL)/ZrespeUively.Thecoefficientse.(q)arenarmalizationfactars. 

SFL/WFL borderlines into the superuniversal parametrizations (11) and (12) was 
achieved by means of a conformal mapping that constructed V ( y )  from V,(y).  The 
symmetric potential V, (y )  introduced in 111 also describes an IFL regime but is not 
characterized by the universal eigenvalue and eigenfunction parametrization. Whilst 
the partition function for this potential is still characterized by q [13] the form of the 
eigenfunctions when 6 # 0 bares no similarity to case 6 = 0. Consequently the simple 
universality of the eigenstates does not follow immediately from the structure of the 
Schradinger equation (2) with arbitrary V ( y ) .  

So far we have merely noted that there exists numbers q which parametrize the 
various universality classes and scaling regimes. In fact the fluctuation designator is 
directly related to the values of the critical exponents describing the critical wetting 
transition in the semi-infinite geometry. This can be seen as follows: in the limit of an 
infinitely long strip (M = m) but arbitrary V ( y )  the ground state wavefunction &(y)  
determines the one-body probability distribution: P ( y )  = &y) .  In the limit of L+ m 
(with y fixed) we must recover the correct semi-infinite result for the SDE of P ( y )  
(recall P ( y ) / P ( l ) c c y e - '  at criticality). From the expression for S,(y; q )  it follows that 

8-1 
q = y  all regimes 

in agreement with the values quoted above. Recall [ 8 , 9 ]  that 0 is itself related to other 
critical exponents. For instance in the SFL and SFL/WFL regimes (14) further reduces 
to q = (ps-  1) /2p . .  Substituting in the appropriate critical wetting results for p, recovers 
the correct value of the fluctuation designator in these regimes. 

Having identified q there still remains the issue of why a simple universal parametriz- 
ation of the eigenstates should exist. We speculate that this may be a consequence of 
local scale invariance at fluctuation-dominated wetting transitions in two dimensions. 
At a wetting transition two dilation factors (see for example [ 5 ] )  b, and bl, ( = b :  in 
d = 2) are needed to specify the global scale invariance of the interfacial fluctuations. 
Since the renormalization group transformation is a local one, one may conjecture, by 
analogy with the bulk case, that this scale invariance is obeyed for local perpendicular 
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and parallel dilation factors. Since the dilation factors are necessarily anisotropic the 
local scale invariance is not conformal. Nevertheless we have argued elsewhere [ 6 ]  
that the local scale invariance of some one-point functions may be described under 
certain conditions [13] by a conformal mapping. There is a simple reason for this 
possibility. If a one-point function h ( y )  exhibits a SDE at a wetting transition then this 
function satisfies the homogeneity condition f ; (y /b , )  = b;",- '%(y). Here Bi is the 
generalization of the order parameter SDE critical exponent. In contrast to higher point 
functions bll is not required explicitly to specify the global scale invariance of f ( y )  
provided the system is translationally invariant in the x direction. The conformal 
mapping w = ( L I T )  In z can be used to map the semi-infinite plane into the infinitely 
long-strip. Since such a transformation preserves the translational invariance and the 
capillary-wave form of the Lagrange density [13] we have argued [6,13] that the 
behaviour of certain one-point functions in the (M =a) strip may he correctly described 
by conformally mapping the SDE law for the semi-infinite plane. We have already 
shown [6] that this is correct for the one-body probability distribution P ( y )  which 
explains why & ( y )  is the universal function S,(y;  q )  specified by the fluctuation 
designator q in all regimes. Moreover the universality of ILl(.v)= S , ( y :  q )  follows from 
the observation [13] that the operator &(y')JII(y ' )  dy' (which corresponds to the 
(position dependent) amplitude of the asymptotic decay of the connected order- 
parameter pair correlation function) in the strip is correctly given by conformally 
,uapp,,,g I,> *"E 111 LLIG J c i l l l l - l l l l l l l l l G  prar1s. i)Lllllldl I G l l l d l l i S  "ppty L" LIIC rrrg,rcr GACIIS" 

states [13]. This approach naturally explains why the superuniversality of S, , (y ;  q )  and 
e.(q) only applies for those potentials (up to an arbitrary additive constant) which 
are obtained via the logarithmic conformal mapping. Further details on the nature of 
scale invariance at wetting transitions will appear elsewhere [ 131. 

The author has benefited from conversation with M V Berry, R Evans and J Hannay. 
This research was supported by the SERC, UK. 
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